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where the indexes i, j indicate the row (exposure 
year) and the column (development year) of the tri-
angle, respectively, and the log(i) operator refers to 
the natural logarithm. Equation (1a) states that the 
log incremental payments (y

i,j
) are modeled as a scale 

mixture of normal distributions. The expected value 
of a given log incremental payment (µ

i,j
), as speci-

fied in Equation (1b), equals the calendar year effect-
adjusted incremental payment of the corresponding 
column in the first row of the triangle (S

j
), plus the 

calendar year effects (κ
i+j

) and the exposure growth 
(η

i
) that has accumulated since the first payment in 

the first accident year (y
1,1

). Note that η
1
 = 0, since 

there is no exposure year 0. Similarly, κ
1
 = κ

2
 = 0; this 

is because the index of the calendar year effect refers 
to the number of the diagonal, and the first calendar 
year effect is the one for diagonal i + j = 3 (relative to 
diagonal i + j = 2). The precision (i.e., inverse of the 
variance) of the normal distribution is the product of a 
gamma-distributed random variable (ω

i,j
), as defined 

in Equation (1c), and the inverse of the square of a 
scale parameter (σ

i
) that varies by development year 

and is defined in Equation (1d). The logarithm of 
the square of this scale parameter follows a second-
order random walk, starting in development year 3, as 
described in Equation (1e). The innovation variance 
of this random walk is modeled as an inverse gamma 
distribution with smoothing parameters 5 and 0.5; see 
Equation (1f). Equation (1g) presents the prior distri-
butions of the scale parameters of the first two devel-
opment years. Finally, Equation (1h) defines the prior 
for the degrees of freedom; following Meyer and Yu 
(2000), this prior is a χ 2

(8)
 distribution that is restricted 

to the interval (2,50).
The variable (S

j
) represents (in logarithmic terms) 

the consumption of (medical or indemnity) services 
in development year j, normalized to the level of 

instance, medical) services. A decline in consump-
tion at the level of the aggregate loss triangle may 
be due to claimants exiting or remaining claimants 
decreasing their consumption.

What follows is a description of the main compo-
nents of the model. After describing the likelihood, 
there follows a discussion of the modeling of the cal-
endar year effect and of exposure growth. Further, 
there are details on how to model a structural break 
in consumption and how to employ Reversible Jump 
MCMC for estimating the trajectory of the consump-
tion path without and with a structural break. The 
section concludes with a presentation of the estima-
tion of the probability of payment. Note that both 
triangles studied here consist of accident year data.

2.1. The Student’s t likelihood

The loss development model fits to logarithmic 
incremental payments; non-positive incremental pay-
ments are treated as missing values. The model uses  
a Student’s t likelihood to accommodate heavy tails; 
this t distribution is implemented as a scale mix-
ture of normal distributions (Gelman et al. (2004),  
p. 446); further, the degrees of freedom of this t dis-
tribution are determined within the model, but are 
restricted to values greater than 2 to ensure the exis-
tence of a finite variance. Finally, this t distribution 
accommodates heteroskedasticity by allowing the 
scale parameter to vary with development time; this 
time variation is estimated using a second-order ran-
dom walk smoother (Congdon (2005), p. 141).

The Student’s t likelihood consists of

yi j i j i j j, , ,, ( )∼ iN 1aµ ω τ( )

µ κ ηi j k
k

i j

k j
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For indemnity triangles, an appropriate expert prior 
is the legally stipulated rate of escalation; for Ari-
zona, this rate is zero. For medical triangles, a suitable 
expert prior is the (logarithmic) rate of inflation of the 
Medical Care component of the CPI (Consumer Price 
Index), M-CPI for short. It can be shown that any 
systematic difference between the logarithmic rate of 
M-CPI inflation and the (actual but unknown) loga-
rithmic rate of inflation that applies to medical pay-
ments on workers compensation claims feeds into the 
rates of exposure growth and the rates of decay without 
affecting the estimated log incremental payments. This 
is because we can rewrite Equation (1b′) as

µ κ η δi j k
k

i j

k k
k

j

k

S c c c, .= + −( ) + +( ) + +( )
=

+

==
∑ ∑1

2 111

i

∑ ′′( )1b

Let us assume that (in logarithmic terms) the M-CPI 
is systematically below the workers compensation 
price index by a constant c > 0; this means that the 
posterior for the calendar year effect centers on a value 
that is systematically underestimated. In this case, the 
constant c feeds into both the rate of decay (

∼δ
k
 = δ

k
 + c) 

and the rate of exposure growth (∼η
k
 = η

k
 + c), thereby 

leaving the expected log incremental payments (µ
i,j
) 

unaffected. This arithmetic relation among the three 
growth rates reduces the discussion about the ade-
quacy of the M-CPI rate of inflation as an expert 
prior for the workers compensation medical rate of 
inflation to a matter of interpretation regarding the 
rate of decay (δ) and the rate of calendar year effect-
adjusted exposure growth (η).

For the purpose of squaring the triangle and, if 
applicable, estimating future exposure years, it is 
necessary to simulate future calendar year effects. 
Such simulation necessitates an assumption about 
the future behavior of the expert prior around which 
the future calendar year effect is normally distributed 
with the posterior precision τκ. For the indemnity tri-
angle, the expert prior of future calendar year effects is 
simply set to zero. For the medical triangle, the expert 
prior is the simulated logarithmic rate of M-CPI infla-
tion. This rate of inflation is specified as an Ornstein-
Uhlenbeck process, similar to long-term interest rates 

exposure of the first accident year. The trajectory of 
consumption from the first to the final (j = K) devel-
opment year, S

1
, S

2
 . . . S

K
, is estimated using a linear 

spline, the number of knots of which are estimated 
using Reversible Jump MCMC, as is to be discussed 
in Sections 2.5 and 2.6. The (logarithmic) rate of 
decay (δ

j
) is backed out of S

j
:

δ j j jS S j= − ≥−1 2, . ( )1i

Clearly, because there is no development year 0, 
δ

1
 = 0. Solving Equation (1i) for S

j
 and inserting it 

into Equation (1b) delivers

µ κ η δi j k
k

i j

k k
k

j

k

i
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=
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==
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which states that the expected log incremental pay-
ment equals the first expected log payment (located 
in the first row and first column) (S

1
), plus the accu-

mulated calendar year effects κ k
k

i j

=

+

∑( )
2

,  the cumulative

exposure growth ηk
k

i

=
∑( )

1

,  and the cumulative decay in

consumption δ k
k

j

=
∑( )

1

.

The growth rates κ, η, and δ are transformed from 
the logarithmic scale to the raw scale (by means 
of exponentiation) for each individual draw of the 
MCMC updates. The charts in Section 3 of the decay 
rate, of the exposure growth rate, and of the calen-
dar year effect all rest on growth rates that have been 
transformed in such a way.

2.2. The calendar year effect

The calendar year effect (κ) is modeled as a nor-
mal distribution around an expert prior (µκ), the stan-
dard deviation of which has a uniform prior:

κ µ τκ κi j i j i j+ +( ) + ≥∼ N 2a, , , ( )3

τ σκ κ= 1 2 ( )2b

σκ ∼ U 2c0 10, . ( )( )
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2.3. Exposure growth

The rate of exposure growth is modeled as a draw 
from a normal distribution that accommodates hetero-
skedasticity by allowing the logarithm of the squared 
scale parameter to vary with the exposure (e.g., acci-
dent) year, similar to the logarithm of the squared 
scale parameter of the Student’s t distribution. This 
time variation is estimated using a second-order ran-
dom walk smoother. The need for a time-varying scale 
parameter arises from the comparatively high rates of 
change in volume in the early years of the SCF Arizona 
and SAIF Oregon triangles. The equations for the rate 
of exposure growth read

η µ τη ηi ∼ N 3a, ( )( )

µη ∼ N 3b0 1, ( )( )

τ ση η, , ( )j j= 1 2 3c

log log log ,, , ,σ σ σ υη η η ηj j j

2

1

2

2

22( ) ( ) − ( )( − −∼ iN ))
≥

,

( )j 4 3d

υη ∼ Ga 3e5 0 5, . ( )( )

ση, , , , . ( )j j∼ U 3f0 10 2 3( ) =

Equation (3a) defines the normal distribution, the 
expected value of which has a highly uninformed 
prior. The equations for the scale parameter (Equa-
tions 3c-f) are equivalent to those contributing to 
the Student’s t likelihood (Equations 1d-g).

2.4. Structural break

There are two versions of the model, “standard” 
and “break.” The standard version assumes that the 
consumption path of services (i.e., the trajectory of 
exposure-adjusted and calendar year effect-adjusted 
log incremental payments) is invariant to exposure 
time (e.g., the accident year), thus resulting in a tra-
jectory S

1
, S

2
 . . . S

K
 that applies uniformly to the 

entire triangle. The break version of the model allows 
for a (single) structural break in this consumption 

(see Vasicek (1997)). The Ornstein-Uhlenbeck pro-
cess models the logarithmic rate of inflation as a 
stochastic process with transitory random shocks, as 
opposed to the random walk, where all innovations 
are permanent. As a result, the simulation of future 
rates of inflation using the Ornstein-Uhlenbeck pro-
cess implies a return of the inflation rate to its long-
term mean.

In discrete time, the Ornstein-Uhlenbeck process 
can be calibrated by estimating the following first-
order autoregressive model (see Dixit and Pindyck 
(1994)):

µ µ τκ κ ε, , , , , ( )i ia b a+ = +( ) < <1 0 1N 2di

where a, b, and the precision τε are the parameters to 
be estimated, and µκ,i

 are the observed (log) rates of 
M-CPI inflation. The rate of inflation µκ,i

 reverts to 
the mean b/(1 − a) at the rate −log(a). The innovation 
variance of the shocks reads (see Dixit and Pindyck 
(1994))

1 2

1
2τε

i
− ( )

−( )
log

. ( )
a

a
2e

The Ornstein-Uhlenbeck process was calibrated 
using the entire history of the M-CPI rate of infla-
tion up to the year of the final observed diagonal of 
the SAIF triangle, thus comprising the years 1935 
through 2005. The following prior distributions were 
employed, all of which are highly uninformed:

a ∼ Beta 2f1 1, ( )( )

b ∼ N 2g0 10 6, ( )−( )

τε ∼ Ga 2h0 001 0 001. , . . ( )( )

After calibrating the Ornstein-Uhlenbeck process 
to historical data, it is a straightforward procedure to 
simulate future values for the rate of inflation, which 
deliver the expert priors for future calendar year 
effects of the SAIF medical triangle.
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where I(i) is an indicator function that is equal to 
unity if the statement in the parenthetical is true, and 
zero otherwise.

2.5. Consumption path

The consumption path is modeled as a linear spline. 
A linear spline is a piece-wise linear trajectory that 
changes slopes in locations known as knots. Gimenez 
et al. (2008) discuss the implementation of a linear 
spline using MCMC; this spline has a fixed number 
of knots, but the locations of these knots are endog-
enous. Because the location of a knot has a posterior 
distribution instead of just a point mass in a single 
location, the posterior of a linear spline is not neces-
sarily piece-wise linear but may display a fair degree 
of smoothness, depending on the number of knots 
and the posterior uncertainty about their locations. In 
what follows, a linear spline is implemented where 
both the number of knots and the locations of these 
knots are endogenous. The variation in the number 
of knots implies variation in the dimension of the 
parameters that need updating. RJMCMC (Revers-
ible Jump MCMC) is an MCMC sampling technique 
that accommodates such variation in dimension. The 
implementation of RJMCMC discussed below draws 
on Lunn, Best, and Whittaker (2008).

2.5.1. Consumption path without  
structural break

In the version of the model that does not allow for 
a structural break, the linear spline specification of 
the consumption path S

1...K
 reads

S j jj g g g
g

= + −( ) − >( )
=

∑β β θ θ
ξ

0
1

0i i I 5a( )

β ξg g∼ N 5b0 0 0001 0, . , . . . ( )( ) =

ϑ1 1= ( )5c

ϑ
ξg

b
g

−
−( ) ( ) =

1

1
1 2 2∼ Beta 5d, , . . . ( )

path, thus differentiating between a pre-structural 
break trajectory R

1,1
, R

1,2
 . . . R

1,K
 and a post-structural 

break trajectory R
2,1

, R
2,2

 . . . R
2,L

, where L < K is the 
final exposure year of the interval in which the struc-
tural break is allowed to occur. Both trajectories are 
estimated as linear splines using Reversible Jump 
MCMC, as discussed in Section 2.5.

The model estimates the probability distribution 
of the change point in the consumption path within 
a provided interval of exposure years. Such an inter-
val may be set at one year or may comprise multiple 
years. Within this interval, the consumption paths 
of the exposure years are mixtures of the pre-break 
path and the post-break path, except in the extreme 
case that the model assigns all probability mass to a 
single year, in which case each year belongs strictly 
to the pre-break regime or the post-break regime. 
The change point (C) has a scaled, shifted, and trun-
cated beta prior:

 ∼C Beta 4a2 2, ( )( )

C C L M M= +( ) −( )( ) +floor 4b i 1 , ( )

where M (M ≤ L) is the first year in the interval of 
exposure years during which the structural break 
is allowed to occur, L is the last year, and C rep-
resents the first year in the new regime; the opera-
tor floor(i) rounds down to the nearest integer. 
The density of the beta distribution (Equation 4a) 
is hump-shaped, thus allocating more probability 
mass to the center of the interval than to the edges. 
If the break interval comprises two exposure years, 
the prior accords each year the same probability of 
hosting the change point.

In the break version of the model, the consump-
tion path is no longer uniform across the cells of the 
triangle. Thus, Equation (1b) has to be replaced by

µ κ ηi j k k
k

i

k

i j

i jV, , ( )= + +
==

+

∑∑
12

4c

V R C R Ci j j j, , , , ( )= >( ) + ≤( )1 2
i iI i I i 4d
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selected from θ(t), after scaling. If the proposed move 
is of type death, then ξ′ is set to ξ(t) − ψ, and ψ ran-
domly selected knots are eliminated, in turn, from 
θ(t). If the proposed move is of type shuffle, then ξ′ 
is set to ξ(t), and ψ randomly selected knots are elim-
inated from θ(t). Then, using the surviving ξ(t) − ψ 
knots as a basis, a birth of ψ knots is performed.

2.5.2.3. Accepting or rejecting the  
proposed move

In what follows, the acceptance probability ρ = 
min(ρ′,1) of the newly proposed number of knots 
(ξ′) and knot vector (θ′) is calculated. As in Lunn, 
Best, and Whittaker (2008), the acceptance prob-
ability is calculated solely based on ξ and θ. This 
is accomplished by integrating out β, κ, µη, and η. 
Thus, we can write:

′ =
′ ′( ) × ′( ) ( ) ( ) ( ) ( )

ρ
ω τ µ τ τ θ ξκ κ ηp y pt t t t t, , , , , , ξξ θ ξ

ω τ µ τ τ θκ κ η

( ) × ′ ′( )
( ) ( ) ( ) ( ) ( )

p

p y t t t t t, , , , , tt t

t t tp p

( ) ( )

( ) ( ) ( )
( )

× ( ) × ( )
×

′ ′{

,

,

,

ξ
ξ θ ξ

θ ξProp }} → { }( )
{ } → ′ ′{ }( )

( ) ( )

( ) ( )
θ ξ

θ ξ θ ξ

t t

t t

,

, ,
(

Prop
5gg)

where Prop({θ(t), ξ(t)} → {θ′, ξ′) is the probability of 
proposing {θ′, ξ′}, given the current state {θ(t), ξ(t)}, 
and Prop({θ′, ξ′} → {θ(t), ξ(t)}) is the probability of 
proposing the reverse move. Then, with probability 
ρ, {ξ(t+1), θ(t+1)} is set to {ξ′, θ′}; otherwise, {ξ(t+1), 
θ(t+1)} is set to {ξ(t), θ(t)}.

2.5.2.4. Updating the remaining parameters
Let Θ = {β

0...ξ, κ
3...K+1

, µη, η
2...K

}. All elements of 
the vector Θ have a (conditional) normal prior. Fur-
thermore, y

i,j
 ∼N(µ

i,j
, ω

i,j
 i τ

j
), where µ

i,j
 is a linear 

combination of the elements of Θ. As a result, the 
(conditional) posterior of Θ is multivariate normal, 
which makes the Gibbs sampler available. The algo-
rithm for sampling from Θ rests on a section of JAGS 
source code that has been modified to accommodate 
the variability in the dimension of Θ. The value Θ(t+1) 
is drawn directly from the (conditional) posterior of 
Θ.

nodes greatly aids convergence due to their high cor-
relation with S

1...K
.

The RJMCMC update process is largely based 
on Lunn, Best, and Whittaker (2008) and can be 
organized into four steps: (1) propose a move type,  
(2) propose a new knot vector, (3) accept or reject the 
proposed move, and (4) update the remaining param-
eters inside the oval of Figure 2 via Gibbs sampling. 
Details of these four steps are presented below.

2.5.2.1. Proposing a move type
At random, a new move type is proposed. Possible 

moves include birth, death, shuffle, and no change. 
A birth is the addition of a random number of knots 
while leaving all current knots in place; a death is the 
removal of a random number of knots; a shuffle leaves 
the number of knots unchanged but rearranges a ran-
dom number of knots; and no change leaves the cur-
rent number of knots and their positions unchanged.

The type of the proposed move must respect the 
lower and upper bounds on the number of knots. For 
instance, if the current number of knots is unity (the 
lower bound), no death is allowed to occur; similarly, 
if the current number of knots is equal to λ (the upper 
bound), no birth is allowed to occur. In order to incor-
porate these constraints, the probability of proposing 
a given move type is made a function of these bounds 
and the current number of knots.

If the proposed move is of type no change, ξ(t+1) and 
θ(t+1) are set to ξ(t) and θ(t), and the process proceeds 
immediately to step 4. (The superscript (t) refers to 
the iteration number of the Markov chain.) Other-
wise, the number of knots to alter equals unity plus 
an integer proposed from a Poisson distribution that 
is truncated so as to respect the mentioned bounds on 
the number of knots.

2.5.2.2. Proposing a new knot parameter vector
Let the number of knots to alter be denoted ψ. If 

the proposed move is of type birth, then ξ′ (the pro-
posed value) is set to ξ(t) + ψ. Then, for each of the ψ 
new knots that are to be generated, a new knot is pro-
posed at random from either a uniform distribution 
or a beta distribution centered on a knot randomly 
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ϑ θξ ξi ii i
i, . . . , . . . , , ( )1 1 1 2= ( ) =Sort 5l

ξ λ λλi j i ip p p j i
i

∼ Cat 5m1 1 1 1 2. . . , , . . . , , . ( )( ) = = =

All applicable interpretations of variables and 
parameters are carried forward from Section 2.5.1. 
Equation (5k) states that the priors for ϑ

1,2...ξ1
 and 

ϑ
1,2...ξ2

 are beta distributions with proper support. 
The support is defined in such a way that ϑ

1,2...ξ1
 are 

all greater than unity but less than the second to last 
development year that exhibits a positive incremen-
tal payment, and ϑ

2,2...ξ2
 are all greater than unity but 

less than K − M, where K is the number of columns 
of the triangle (as mentioned) and M is the first year 
in the interval of exposure years during which the 
structural break is allowed to occur (as discussed). 
The parameters for the beta distributions are defined 
as {γ

1,1
, γ

1,2
} = {1, 2} and {γ

2,1
, γ

2,2
} = {1, 1}. Equa-

tion (5m) affords equal probability to each number 
of knots (ξ

i
) in the set of integers greater than or 

equal to unity but less than or equal to λ
i
, where  

λ
1
 = floor(K/2 + 1) and λ

2
 = floor((K − M + 1)/2 + 1).

2.6.1. Reversible jump Markov chain  
Monte Carlo implementation

Figure 3 displays the stochastic dependence graph 
for the parameters updated by means of the RJMCMC 

2.6. Consumption path with  
structural break

The break version of the model allows for a struc-
tural break in the consumption path across exposure 
years. A structural break implies different trajectories 
of log incremental payments (adjusted for exposure 
growth and calendar year effects) before and after 
the interval of exposure years in which the struc-
tural break is allowed to occur; as discussed, the 
consumption paths that apply to the individual expo-
sure years within the interval are mixtures of the two 
the trajectories. Whereas in the standard model this 
trajectory is denoted S

1...K
, in the break model, the 

pre-break trajectory reads R
1,1...K

 and the post-break 
trajectory reads R

2,1...K−M+1
. In accordance to the stan-

dard model, the consumption paths are modeled as 
linear splines:

R j j ii j i i g i g i g
g

i

, , , , , ,= + −( ) − >( )
=

∑β β θ θ
ξ

0
1

0i i I == 1 2, ( )5h

β ξi g ig i, , . , . . . , , ( )∼ N 5i0 0 0001 0 1 2( ) = =

ϑ i i, , , ( )1 1 1 2= = 5j

ϑ
γ γ ξi g

i
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g i,

, ,, , . . . , ,
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1
2 1 21 2∼ Beta (( )5k

κ3 . . . Κ+1

µκ,3 . . . Κ+1
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y{UL}

V{UL}

C ω{UL}

τ1 . . . Κ

η2 . . . Κ

µη

τη,2 . . . Κ

τκ

θ2,2 . . . ξ2

ξ2ξ1 θ1,2 . . . ξ1

β2,0 . . . ξ2

R2,1 . . . Κ−Μ+1

R1,1 . . . Κ

β1,0 . . . ξ1

Figure 3. Stochastic dependence graph for RJMCMC (break)
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2.7. Probability of payment

The discussed model of loss development fits to 
logarithmic incremental payments. Because the log-
arithm of zero or less is undefined, incremental pay-
ments at amounts of zero or at negative amounts 
are treated as missing values. Generally, the esti-
mated rate of decay responds to declines in incre-
mental payments as development time progresses; 
yet, the rate of decay is insensitive to declines to zero 
because amounts of zero register as missing values on 
the logarithmic scale. As a result, without account-
ing for this decline in the probability of payment, the 
model overestimates the ultimate loss. The solution 
to this problem is to estimate a trajectory of the prob-
ability of payment alongside the model and, draw by 
draw, multiply the estimated incremental payment by 
the outcome of a Bernoulli process that models the 
probability that the payment occurs.

The probability of payment is a function of the 
number of open claims, which is itself a function of 
development time and exposure. Because the level 
of exposure cannot necessarily be assumed as time-
invariant, possibly due to a positive trend rate of 
growth in business volume, the probability of pay-
ment may vary along the accident year time axis. At 
the same time, because all observations of payments 
at zero amounts that are available for estimating the 
trajectory of the probability of payment are from high 
maturities, the estimated trajectory may be appropriate 
only for the early accident years. For more recent acci-
dent years, this trajectory may have to be adjusted, 
using data that is external to the loss triangle, such 
as mortality tables or legislative information.

In a given triangle, observations of payments at zero 
amounts may be sparse, if not nonexistent. Further, 
although the proportion of payments at zero amounts 
by column may increase as development time pro-
gresses, the total number of observations by column 
invariably converges to unity before the triangle runs 
out of reported development years. For this reason, 
when estimating the Bernoulli process, the prior of 
the parameter of this Bernoulli distribution, which 
varies by development year, is determined using a 

algorithm. The meaning of solid and dashed lines is 
consistent with Figure 2, as is the meaning of the oval 
and nodes with broken outlines.

The RJMCMC update step for the break case is 
again largely based on Lunn, Best, and Whittaker 
(2008) and merely an extension of the algorithm 
discussed in the context of the standard model. 
The proposal {ξ

1
′, θ

1
′} is made using the algorithm 

discussed in Sections 2.5.2.1 and 2.5.2.2, while 
keeping the current values ξ

2
(t) and θ

2
(t) fixed. The 

acceptance probability for {ξ
1
′, θ

1
′} is calculated as 

ρ
1
 = min(ρ

1
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The proposal {ξ
2
′, θ

2
′} is also made using the algo-

rithm outlined in Sections 2.5.2.1 and 2.5.2.2, but 
keeping the updated values ξ

1
(t+1) and θ

1
(t+1) fixed. The 

acceptance probability for {ξ
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′} is calculated as 
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The (conditional) posterior for the remaining param-
eters Θ = {β

1,0...ξ1
, β

2,0...ξ2
, κ

3...K+1
, µη, η

2...K
} is again 

multivariate normal. Hence, as in Section 2.5.2.4, 
the value Θ(t+1) is drawn directly from the conditional 
posterior of Θ.
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estimation results of the SCF indemnity triangle and 
SAIF medical triangle are presented in Section 3.1 
and Section 3.2, respectively.

3.1. Empirical evidence for the  
SCF Arizona indemnity triangle

The SCF Arizona indemnity triangle consists of 
accident year data and comprises 66 years of devel-
opment; the accident years range from 1938 through 
2003. The original triangle extends back to accident 
year 1930, but is only sparsely populated in accident 
years 1930–1937; hence, these early accident years 
are excluded from the analysis. The first fully popu-
lated diagonal of the SCF triangle falls into calendar 
year 1988. See Appendix A for a schematic exposi-
tion of this triangle.

There were no significant legislative reforms in 
workers compensation in Arizona during the period 
1988 through 2003 (which is the time window cov-
ered by fully populated diagonals) that would have 
given rise to a structural break in the consumption 
path of indemnity benefits. Hence, no change point 
specification was included in the model. The results 
for the SCF Arizona indemnity triangle are summa-
rized in Figures 4 through 16.

Figure 4 presents (in logarithmic terms) the incre-
mental payments, as observed (indicated by circles) 
and predicted (indicated by lines; each line repre-
sents one accident year). In this chart, predicted 
values are reported only for positive log incre-
mental payments, as indicated by breaks in the lines. 
Note that no single accident year covers more than 
23 development years; most accident years comprise 
no more than 16 development years; hence, the dis-
played trajectories of incremental payments each 
apply only to a limited bracket of (contiguous) devel-
opment years. Observed and incremental payments 
line up well, which is in part due to the triangle being 
one of indemnity payments (as opposed to medical 
payments); the magnitude of indemnity payments is 
legally stipulated and highly predictable.

Figure 5 displays (in logarithmic form) the esti-
mated consumption path of indemnity services for 

parametric specification. The chosen functional form 
is a Gompertz curve, which affords the trajectory of 
the Bernoulli parameter a fair amount of flexibility. 
The Gompertz curve is restricted to values between 
zero and unity, thereby leaving two parameters to 
estimate.

The Bernoulli approach to modeling the probabil-
ity of payment reads

u pi j j, ( )∼ Bern 6a( )

p jj
i i( )( )= − −ϕ −ϕ1 exp exp (6b)1 2

log , ( )ϕ µ
τ

τϕ

ϕ
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1

2
1

1
( ) ( ) −







∼
i

N log 6c,1

log , ( )ϕ µ
τ

τϕ

ϕ

ϕ2

1

2
2

2
( ) ( ) −







∼
i

N log 6d,2

τϕi
i∼ Ga 6e10 0 1 1 2, . , , . ( )( ) =

The expected values µφ,i=1,2
 of the prior distributions 

of the Gompertz parameters in Equations (6c,d) are 
chosen based on data exploration prior to estimat-
ing the model but, at the same time, impose little 
restriction on the functional form due to the selected 
gamma priors. For the SAIF Oregon triangle, these 
expected values read µφ = {1500, 0.1355}; for the 
SCF Arizona triangle, it is µφ = {25,000, 0.17}.

3. Empirical evidence

What follows is an application of the outlined loss 
development model to the SCF Arizona indemnity 
triangle and the SAIF Oregon PD medical triangle. 
The model was estimated in R 2.7.1, using JAGS 
1.0.3. The estimation made use of three Markov 
chains with a burn-in of 2,000,000 iterations and a 
sample of 2,000,000 iterations, thinned by 5, thus 
resulting in a sample size of 1,200,000. Each Mar-
kov chain was assigned to one processor (on a multi-
processor computer) to speed up computation. The 
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year. As the chart demonstrates, for early develop-
ment years, the probability of observing a non-zero 
indemnity payment is essentially unity. This prob-
ability starts declining in a meaningful way shortly 
before development year 50. At the final observed 
development year (year 66), the probability of observ-
ing a non-zero incremental payment is still around  
30 percent. Clearly, the decline of this probability 
is driven by the high development years and, hence, 

reduced by social security offsets. (No social secu-
rity offsets apply in the state of Arizona during the 
studied timeframe.) It is thus not surprising that the 
rates of decay of the consumption of indemnity ser-
vices, which are displayed in Figure 6, are correlated 
with the rate of mortality. The estimated values of 
these decay rates are provided in Appendix B.

Figure 7 shows the estimated probability of there 
being an incremental payment in a given development 
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Figure 6. SCF indemnity: trajectory of the rate of decay of consumption
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Figure 7. SCF indemnity: probability of there being a nonzero payment
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ing a payment in a given development year. Hence, 
for the purpose of simulating ultimate losses of 
more recent (or future) accident years, this trajec-
tory of the probability of payment may need to be 
shifted to the right.

Figure 8 exhibits the rates of exposure growth. These 
growth rates are highly variable in the early accident 
years, possibly due to the comparatively small base or 

by the early accident years. As a consequence, this 
probability is greatly influenced by the compara-
tively low volume of the early accident years and 
by the mortality rates of the claimants that sustained 
injuries in those early years. All else being equal, 
the higher the number of claimants of a given accident 
year is and the higher the longevity of this cohort of 
claimants is, the higher is the probability of observ-
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Figure 8. SCF indemnity: rate of exposure growth
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Figure 9. SCF indemnity: smoothed scale parameter of normal distribution (exposure growth)
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mal distribution; the square of the scale parameter of 
this normal distribution was smoothed (in logarithmic 
terms) across time using a second-order random walk. 
Figure 9 displays this scale parameter, alongside 
90 percent credible intervals, the bounds of which 
are subject to the degree of smoothing.

Figure 10 displays the calendar year effect. For the 
time frame studied here, there was no legally stipu-

incomplete data. Most notable is a nearly 1,500 per-
cent increase in accident year 1942; this spike in the 
growth rate follows an accident year with only two 
recorded payments, one of which is comparatively 
small (and positive) and the other one is negative. 
In more recent accident years, the rate of exposure 
growth is relatively small and smooth. As discussed, 
the rate of exposure growth was modeled using a nor-
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Figure 10. SCF Indemnity: calendar-year effect
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not populated (but instead display missing values). 
The fully populated diagonals of the time window 
1988–2003 exhibit calendar year effects between a 
negative four percent and a positive ten percent. Past 
the final observed diagonal, the calendar year effect 
is simulated from the posterior distribution, as esti-
mated from the preceding set of diagonals.

lated cost-of-living adjustment of indemnity benefits 
in Arizona. As a result, the expert prior for the cal-
endar year effect is set to zero; in the chart, this prior 
is labeled official rate of inflation. Prior to calendar 
year 1981, the posterior median for the calendar year 
effect differs from this expert prior only by the sam-
pling error, because the corresponding diagonals are 

Figure 12. SCF Indemnity: smoothed scale parameter of Student’s t distribution
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Figure 13. SCF indemnity: sorted observed vs. sorted predicted log incremental payments
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Figure 12 shows the estimates of the scale parame-
ter of Student’s t distribution, σ

j
; the logarithm of the 

square of this scale parameter was smoothed using 
a second-order random walk. As suggested by the 
display of the observed logarithmic payments in 
Figure 4, the variance of the logarithmic incremental 
payments increases as the cohort of claimants ages; 
this is because the number of claimants that contribute 

Figure 11 presents the prior and posterior distribu-
tions for the degrees of freedom of Student’s t dis-
tribution, which is employed in the likelihood that 
models the logarithmic incremental payments. As 
mentioned, the prior is a χ 2

(8)
 distribution that is trun-

cated at 2 and 50. The posterior distribution displays 
a mode of around v = 5 degrees of freedom, which 
attests to very heavy tails.

Figure 14. SCF indemnity: standardized residuals, by development year
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Figure 15. SCF indemnity: standardized residuals, by accident year
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The standardized residuals were calculated draw 
by draw; the charts display the means across the 
sampled values. The median values of the residuals 
of a given (development, accident, or calendar) year 
are indicated by pins with solid pinheads. In a well-
calibrated model, these median values show no sys-
tematic deviation from zero on the horizontal time 
axis. Further, with proper adjustment for hetero-
skedasticity, the variance of these standardized resid-
uals must be uniform on the time axis, which appears 
to be the case also.

3.2. Empirical evidence for the  
SAIF Oregon Pd medical triangle

The SAIF Oregon accident year triangle comprises 
80 years of development of the medical component of 
PD claims; the accident years run from 1926 through 
2005. Sherman and Diss (2006) studied an earlier vin-
tage of this triangle.

Appendix A offers a schematic exposition of the 
SAIF Oregon triangle. Similar to the SCF Arizona tri-
angle, the SAIF triangle has a large upper left-hand 
side section of missing values; the first fully populated 
diagonal of the SAIF triangle falls into calendar year 
1985. Due to the sparseness of the data, the first nine 
accident years (1926–1934) are discarded, thereby 

to the incremental payments decreases. Not surpris-
ingly, Figure 12 reveals a substantial increase in the 
scale parameter, which grows to about six times its 
original value (σ

1
) as development time progresses.

Figure 13 plots the observed logarithmic payments 
(y

i,j
) against the estimated quantiles of the predicated 

logarithmic incremental payments; this is to gauge 
the ability of the model to replicate the empirical dis-
tribution. At each draw from the posterior, the pre-
dicted values (

∧
y

i,j
) were sorted; the chart displays the 

medians of these sorted values (or, equivalently, esti-
mates of quantiles), which were plotted against the 
sorted observed values. Most importantly, the chart 
indicates that the heavy tails of the empirical distri-
butions have been well replicated and that there is no 
discernible unexplained skewness in the data.

Figures 14 through 16 are diagnostic charts that 
display standardized residuals along the three time 
axes of the triangle (Figure 14: development year; 
Figure 15: accident year; Figure 16: calendar year). 
These standardized residuals are defined as follows 
(see, for instance, Meyer and Yu (2000)):

yi j i j

j

, , . ( )
−

−

µ

σ υ
υ

i
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7

Figure 16. SCF indemnity: standardized residuals, by calendar year

1985 1990 1995 2000

-6
-4

-2
0

2

Calendar Year

St
an

da
rd

iz
ed

 R
es

id
ua

l

Median

© Copyright 2012 National Council on Compensation Insurance, Inc. All rights reserved.





The Workers Compensation Tails

VOLUME 6/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 67

starting with the third value. The premise of quanti-
fying a structural break in the decay rate is that the 
post-reform rate approaches the pre-reform rate as 
development progresses. This is because, as a cohort 
of claimants ages, the growth rate of consumption 
(but not necessarily the level of consumption) can 
be assumed as increasingly unrelated to the reform 

is slightly higher, but decays faster than before the 
reform. In the chart, the post-reform consumption 
path ends with the final development year repre-
sented in the time interval of the structural break.

Figure 19 exhibits the pre- and post-reform decay 
rates of the consumption of medical services. Fig-
ure 20 offers a detailed view of these growth rates, 

Figure 18. SAIF medical: trajectory of consumption of medical services (level of exposure as of first 
accident year)
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Figure 19. SAIF triangle: trajectories of the rate of decay of the consumption of medical services,  
pre-reform and post-reform
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22 development years offers an important insight: 
Generalized to smaller medical triangles (e.g., 30 
development years), the estimated decay rate at the 
final development year may serve as the basis for 
projecting the consumption path at higher maturities. 
Appendix B displays the numerical values of the 
estimated pre-reform and post-reform decay rates.

and instead increasingly related to mortality. Based 
on this argument, the trajectory of the post-reform 
decay rate merges with the pre-reform decay rate 
where the post-reform consumption path ends.

Most interestingly, the decay rate displayed in Fig-
ures 19 and 20 stabilizes at a negative 3.93 percent 
in development year 23. This stationarity after about 

Figure 20. SAIF triangle: trajectories of the rate of decay of the consumption of medical services,  
pre-reform and post-reform (detailed view)
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Figure 21. SAIF triangle: probability of there being a nonzero payment
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the rate of mortality, as is associated with the aging 
of a cohort of claimants, implies that the surviving 
claimants are increasing their consumption at an ever 
higher rate.

Figure 21 displays the probability of there being 
a payment in a given development year. The dis-
claimer made in conjunction with the SCF Arizona 
indemnity triangle regarding the role of this trajec-

If, in logarithmic terms, the absolute value of the 
rate of decay is less than the absolute value of the rate 
at which claimants leave the cohort, then this implies 
that the remaining claimants are increasing their con-
sumption. Put differently, although the consumption 
of medical services decreases for the cohort, the 
individual claimant’s consumption may increase. In 
such a situation, an increase in the absolute value of 

Figure 22. SAIF triangle: rate of exposure growth
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Figure 23. SAIF triangle: smoothed scale parameter of normal distribution (exposure growth)
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1945, which coincided with World War II veterans 
rejoining the workforce. Several more but smaller 
spikes in exposure growth were observed in the fol-
lowing two decades. The displayed rates of exposure 
growth were affected by the general growth of the 
economy and by legislative changes. Whereas through 
1965, workers compensation benefits in Oregon were 
paid out of the Industrial Accident Fund, effective  

tory for simulated ultimate losses of more recent or 
future accident years applies here, too.

Figure 22 exhibits the rates of exposure growth. 
As with the SCF Arizona indemnity triangle, these 
growth rates are highly variable in the early acci-
dent years, but comparatively small and smooth in 
more recent accident years. Most remarkable is the 
close to 600 percent increase in exposure in the year 

Figure 24. SAIF triangle: calendar year effect
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Figure 25. SAIF triangle: prior and posterior distributions of the degrees of freedom of Student’s 
t distribution
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Figure 24 displays the calendar year effect. Prior 
to calendar year 1984, the posterior median for the 
calendar year effect differs from the rate of M-CPI 
inflation only by the sampling error; this is because no 
incremental payments are available for these diagonals  
and, hence, no calendar year effect can be estimated. 
The fully populated diagonals of the time window 

January 1, 1966, employers could choose to self-
insure, insure with private companies, or stay with the 
Fund, which is now known as SAIF. Figure 23 shows 
how the scale parameter of the normal distribution 
that models exposure growth has declined over time, 
which is consistent with the smoother and, in abso-
lute value terms, smaller observed rates of growth.

Figure 26. SAIF triangle: smoothed scale parameter of Student’s t distribution
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Figure 27. SAIF triangle: sorted observed vs. sorted predicted log incremental payments
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high maturities, i.e., before the triangle runs out of 
payments.

Figure 27 plots the observed logarithmic payments 
(y

i,j
) against the estimated quantiles of the predicated 

logarithmic incremental payments. Here again, the 
predicted quantiles line up well with the observed 
values.

Figures 28 through 30 are the diagnostic charts 
that display the standardized residuals along the 
three time axes of the triangle. As with the SCF Ari-
zona triangle, the charts indicate that the model is 
well-specified; most importantly, Figure 28 suggests 
that the model is capable of accounting for hetero-
skedasticity on the development time axis.

4. Conclusion

It has been shown that the rate of decay in the 
consumption of medical services assumes a sta-
tionary, negative value after about 20 development 
years. This implies that, as a cohort of claimants of a 
given exposure year ages and its number of members 
shrinks, there is an acceleration of consumption of 
medical services on the part of the surviving claim-
ants that offsets the acceleration in the rate of mor-
tality, thus resulting in a constant rate of decay in 

1985–2005 exhibit calendar year effects that are sev-
eral percentage points above or below the rate of 
M-CPI inflation, which is labeled official rate of infla-
tion in the chart; some of these calendar year effects 
are negative. Future calendar year effects are simu-
lated using the Ornstein-Uhlenbeck process (which  
has been calibrated to annual data from 1935 through 
2005) and the posterior distribution around this effect. 
The simulated mean-reverting path of M-CPI infla-
tion is shown by a solid black line; this line increases 
as it approaches the historical average asymptotically 
because the M-CPI rate of inflation for 2005 is below 
the historical average (as recorded through 2005). 
The credible intervals shown in the chart refer to the 
rate of M-CPI inflation only, not to the total calendar 
year effect.

Figure 25 presents the prior and posterior dis-
tributions for the degrees of freedom of Student’s 
t distribution. As with the SCF Arizona indemnity 
triangle, the low degrees of freedom are indicative 
of heavy tails.

Figure 26 displays the estimates of the scale param-
eter of Student’s t distribution. As with the SCF Ari-
zona triangle, the variance of incremental payments 
increases with development time but, contrary to the 
SAIF triangle, this variance shows a decline at very 

Figure 28. SAIF triangle: standardized residuals, by development year
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ments must not only account for the rate of decay in 
consumption, but also for price inflation; depending 
on which of the forces is stronger, incremental pay-
ments may increase with development time. Future 
rates of inflation may be simulated using an Ornstein-
Uhlenbeck process that has been calibrated to the 
rate of M-CPI inflation over the entire history of 
this price index series. As discussed, any systematic 

consumption for the cohort. The analysis does not 
support the hypothesis posited by Sherman and Diss 
(2006) that there is a bulge in the incremental medi-
cal payments at high maturities.

The stationarity of the rate of decay of medical 
consumption displayed in Appendix B lends itself to 
straightforward simulation of the development pat-
tern of incremental payments. These incremental pay-

Figure 29. SAIF triangle: standardized residuals, by accident year
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Figure 30. SAIF triangle: standardized residuals, by calendar year
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Congdon, P., Bayesian Models for Categorical Data, Chichester, 
UK, Wiley, 2005.

Dixit, A. K., and R. S. Pindyck, Investment under Uncertainty, 
Princeton, NJ: Princeton University Press, 1994.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian 
Data Analysis, 2nd ed., Boca Raton: Chapman and Hall/CRC 
Press, 2004.

Gimenez, O., S. Bonner, R. King, R. A. Parker, S. P. Brooks, 
L. E. Jamieson, V. Grosbois, B. J. T. Morgan, and L. Thomas, 
“WinBUGS for Population Ecologists: Bayesian Modeling  
Using Markov Chain Monte Carlo Methods,” in: D. L.  
Thomson, E. G. Cooch, and M. J. Conroy (eds.) Modeling 
Demographic Processes in Marked Populations, Environ-
mental and Ecological Statistics Series, Vol. 3, New York: 
Springer, 2008, pp. 883–915.

Lunn, D. J., N. Best, and J. Whittaker, “Generic Reversible Jump 
MCMC Using Graphical Models,” Statistics and Computing,  
DOI: 10.1007/s11222-008-9100-0, 2008, https://www1.imperial. 
ac.uk/resources/8b3cf549-039e-4f96-8bec-cab969a0695c/ 
eph-2005-01.pdf.

Meyer, R., and J. Yu, “BUGS for a Bayesian Analysis of Sto-
chastic Volatility Models,” Econometrics Journal 3, 2000, 
pp. 198–215.

Sherman, R. E., and G. F. Diss, “Estimating the Workers’ Com-
pensation Tail,” 2006, http://www.richardsherman.com/img/
PCASPaperFinal.pdf.

Vasicek, O., “An Equilibrium Characterization of the Term 
Structure,” Journal of Financial Economics 5, 1977, pp. 
177–188.

Zehnwirth, B., “Probabilistic Development Factor Models with 
Applications to Loss Reserve Variability, Prediction Intervals 
and Risk Based Capital,” Casualty Actuarial Society Forum, 
Spring 1994, Vol. 2, pp. 447–605, http://www.casact.org/pubs/ 
forum/94spforum/94spf447.pdf.

difference between the (logarithmic) rate of M-CPI 
inflation and the unobserved (logarithmic) rate of 
inflation for medical services in workers compensa-
tion factors into the (logarithmic) rate of decay of 
consumption of medical services and, hence, is of 
no concern so long as the relation between these two 
rates of price inflation can be assumed to be stable.

Finally, it has been shown that legislative reforms, 
such as the 1990 cost containment reforms imple-
mented in Oregon, may accelerate the decay in the 
consumption of medical services. Such accelerated 
decay may spill over into the indemnity triangle, 
where it manifests itself in shorter claim durations.
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Table b.1. (Continued) decay rates of consumption for  
SCF Arizona SAIF Oregon triangles

Development 
Year SCF

SAIF 
Pre-Reform

SAIF 
Post-Reform

39 -0.0680 -0.0393 -0.0393

40 -0.0680 -0.0393 -0.0393

41 -0.0680 -0.0393 -0.0393

42 -0.0685 -0.0393 -0.0393

43 -0.0961 -0.0393 -0.0393

44 -0.1169 -0.0393 -0.0393

45 -0.1169 -0.0393 -0.0393

46 -0.1169 -0.0393 -0.0393

47 -0.1169 -0.0393 -0.0393

48 -0.1169 -0.0393 -0.0393

49 -0.1169 -0.0393 -0.0393

50 -0.1169 -0.0393 -0.0393

51 -0.1169 -0.0393 -0.0393

52 -0.1169 -0.0393 -0.0393

53 -0.1169 -0.0393 -0.0393

54 -0.1169 -0.0393 -0.0393

55 -0.1169 -0.0393 -0.0393

56 -0.1169 -0.0393 -0.0393

57 -0.1169 -0.0393 -0.0393

58 -0.1169 -0.0393 -0.0393

59 -0.1169 -0.0393 -0.0393

60 -0.1169 -0.0393 -0.0393

61 -0.1169 -0.0393 -0.0393

62 -0.1169 -0.0393 -0.0393

63 -0.1169 -0.0393 -0.0393

64 -0.1169 -0.0393 -0.0393

65 -0.1169 -0.0393 -0.0393

66 -0.1169 -0.0393 -0.0393

67 NA -0.0393 -0.0393

68 NA -0.0393 -0.0393

69 NA -0.0393 -0.0393

70 NA -0.0393 -0.0393

71 NA -0.0393 -0.0393
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