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Overview

The literature on issues surrounding classical significance and hypothesis testing is extensive.  It is not the 
purpose of this presentation to provide a comprehensive overview of the literature.  Instead, it is intended to 
point out the problem in a parsimonious way and then offer solutions for decision-makers and applied researchers
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• In recent years, a host of articles in newspapers and news magazines have 

drawn attention to issues related to reported statistical evidence

• Among these articles are Matthews [8] (Financial Times, 2004), The 

Economist [12] (2007), Freedman [4] (The Atlantic, 2010), Lehrer [7] (The 

New Yorker, 2010), and Carey [2] (The New York Times, 2011)

• Further, the U.S. Supreme Court in MATRIXX INITIATIVES, INC., ET AL. v. 

SIRACUSANO ET AL., on March 22, 2011, decided in a case on side effects of 

pharmaceuticals that the "premise that statistical significance is the only 

reliable indication of causation is flawed" (*)

Public Discourse Surrounding Reported 
Statistical Evidence

* http://www.supremecourt.gov/opinions/10pdf/09-1156.pdf, p. 2.  The Supreme Court decision raises the question of 
decision-making in the presence of outcomes for which the null hypothesis ("no effect") cannot be rejected.  The error 
rate in rejecting the null hypothesis when it is true (type II error rate) is rarely available
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• The p-value obtained in classical hypothesis testing (as developed by Neyman and 

Pearson) is not a measure of evidence against the null hypothesis

• It can be shown that a p-value of about 0.05 (e.g., 0.05 after rounding) is about as likely to come 

from the null as from the alternative

• Multiple comparisons

• For a pre-selected type I error rate  (of, for instance, 5 percent), the more tests are done, the 

more likely there is a chance outcome of p  , which is then reported as statistically "significant"

• Magnitudes of small effects tend to be overestimated

• Unusually large effects are more likely to generate an outcome p   , particularly in small 

samples where the standard errors are high, whereas effects closer to what is ordinarily observed 

remain unreported (due to a lack of statistical significance)

Issues Surrounding Reported Statistical 
Evidence

The above list of issues surrounding reported statistical evidence is not meant to be exhaustive
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• The exaggeration of the evidence associated with common interpretations of 

p-values as evidence against the null contributes to false positives

• In biomedical research, for instance, false positives may lead to recommendations for 

medical therapies that ultimately prove ineffective

• Results obtained in multiple comparisons are frequently not replicable due to being 

chance outcomes

• The Bonferroni correction is one of several approaches to adjust classical hypothesis 

testing for multiple comparisons

• When studies are replicated, the magnitudes of the measured effects tend to be 

smaller, especially when the original study is based on a small sample

Implications of Overstated Evidence
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• In 2005, John P.A. Ioannidis published an article in the  Journal of the American Medical 

Association (JAMA) where he examined "all original clinical research studies published in 

3 major general clinical journals or high-impact-factor specialty journals in 1990-2003 

and cited more than 1000 times in the literature" (*)

• Of the resulting 49 highly cited original clinical research studies, 45 claimed that the 

intervention was effective; of these 45 studies, 11 (24 percent) remained "largely 

unchallenged"

• Of the 34 studies that were challenged by subsequent research, 7 (21 percent) were 

contradicted, another 7 (21 percent) had the magnitudes of their effects scaled back, 

and 20 (59 percent) were replicated

An Example from the Medical Sciences

* Ioannidis, John P.A. "Contradicted and Initially Stronger Effects in Highly Cited Clinical Research," Journal of the 
American Medical Association (JAMA), Vol. 294, p. 218–228, 2005, 
http://www.givewell.org/files/methods/Ioannidis%202005-Contradicted%20and%20Initially%20Stronger%20Effects
%20in%20Highly%20Cited%20Clinical%20Research.pdf
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• Show how to calibrate p-values as measures of evidence

• As a diversion, demonstrate how to deal with statistically "significant" and, 

alternatively, statistically "insignificant" results obtained from small samples

• Offer an introduction to variable selection as a Bayesian approach to statistical 

inference and decision-making under uncertainty (*)

• Variable selection is evidential—it provides a posterior probability of the null 

hypothesis being true

• In variable selection regression models, all covariates are retained—the models do 

not have to be re-estimated in the presence of covariates for which no (sufficiently 

strong) statistical evidence has been obtained

The Objective of the Presentation

* In Bayesian statistics, inference and decision-making under uncertainty are conceptually identical
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• The researcher chooses a type I error rate  that defines a critical region for rejecting 

the null hypothesis; a commonly chosen error rate is =0.05 (five percent)

• For instance, in a standard regression framework, the null hypothesis of "no effect" is 

rejected if (and only if) for a given regression coefficient the observed t-statistic is in the 

critical region of "t  t(/2) =1.960" (when making use of the asymptotic properties) (*)

• Because there is a one-to-one correspondence between an observed t-statistic and its 

tail probability, the critical region can alternatively be defined in terms of this tail 

probability, which is known as the p-value, thus substituting p   for t  t(/2) (**)

• Thus, in repeated sampling, using the decision rule p  , the null hypothesis is falsely 

rejected 5 percent of the time

Classical Hypothesis Testing
Developed by Jerzy Neyman and Egon Pearson

* Making use of the asymptotic properties of, for instance, Maximum Likelihood estimators, calls for the use of the 
standard normal distribution (or, equivalently, t-distribution with infinite degrees of freedom)
** The use of the tail probability as the critical region was not part of the original concept of classical hypothesis 
testing developed by Neyman and Pearson; see Hubbard and Bayarri [6]
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• The decision rule p   does not establish evidence against the null

• In the Neyman-Pearson framework, the decision to accept or reject a hypothesis is 

based on cost-benefits considerations that weigh the cost of committing a type I error 

(rejecting the null when it is true) against the cost of committing a type II error (not 

rejecting the null when it is false)

• Says Neyman: (*)

"Thus, to accept a hypothesis H means only to decide to take action A rather than action 

B.  This does not mean that we necessarily believe that the hypothesis H is true … 

[whereas rejecting a hypothesis H] … means only that the rule prescribes action B and 

does not imply that we believe that H is false."

* Neyman, Jerzy, First Course in Probability and Statistics, 1950, New York: Holt, p. 259-260.  Quoted (net of bracket) 
from Hubbard and Bayarri [6]

Classical Hypothesis Testing
Error Rates are Not Measures of Evidence



© Copyright 2011 National Council on Compensation Insurance, Inc. All Rights Reserved. 10

• The p-value obtained in the context of Neyman-Pearson hypothesis testing is frequently 

misinterpreted as a frequency-based type I error rate

• The error rate  is a pre-selected value, whereas the p-value is a data-dependent random 

variable

• According to Hubbard and Bayarri [6], the source of this misinterpretation arises from an 

amalgamation of R.A. Fisher's concept of significance testing (in the absence of an 

alternative hypothesis) and the Neyman-Pearson concept of hypothesis testing

• In Fisher's approach, a small p-value indicates that "[e]ither an exceptionally rare chance 

has occurred or the theory is not true."(*)  The smaller the p-value, the stronger the 

weight of the evidence (Hubbard and Bayarri [6])

Classical Hypothesis Testing
Misinterpretation of p-Values as Error Rates

* Fisher, Ronald A., Statistical Methods and Scientific Inference, 2nd ed., Edinburgh: Oliver and Boyd, 1959, p. 39.  
Quoted from Hubbard and Bayarri [6].  See Appendix 1 for a comparison of R.A. Fisher with Neyman-Pearson
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• The example shows that 115 heads in 200 tosses is more likely under the 

hypothesis of a fair coin (the null) than under the hypothesis of a biased coin

• Yet, in classical hypothesis testing, the null is rejected:

The probability of 115 or more heads in a fixed number of 200 tosses 

equals 0.02, which results in a p-value of 0.04 in a two-tailed test

• Although the outcome is rare under the null, under the alternative of the coin 

not being fair, the outcome is even rarer

• The discrepancy that arises between the frequentist and Bayesian results 

under a uniform prior is known as Lindley's paradox

The Case of the Fair Coin
Frequentist and Bayesian Approaches Deliver Opposing Results

See http://en.wikipedia.org/wiki/Bayes_factor for the example stated above and http://en.wikipedia.org/wiki/Lindley's_paradox 
for a discussion of Lindley's paradox.  The R code for this problem is displayed in Appendix 2
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The Case of the Fair Coin
Probability of the Coin Being Fair, Using Alternative Symmetric Beta Priors for q

The computations are based on Albert [1].  See Appendix 3 for the R code that generates this chart.  The 
minimum posterior probability that the coin is fair equals 26.8 percent
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The Case of the Fair Coin
Summary

• Using alternative symmetric beta distributions as priors for the fairness parameter of the 

coin, q, it has been shown that the posterior probability of the coin being fair when 115 

heads come up in a fixed number of 200 tosses amounts to at least 26.8 percent

• On the other hand, the p-value equals 0.04, thus calling for a rejection of the null in 

classical hypothesis testing (when using an error rate of =0.05)

• The p-value calculation is based on the event "115 heads or more," which has not been 

observed.  What has been observed is exactly 115 heads, and it is this specific event that 

the posterior probability of fairness is based on

• This example illustrates the difference between a measure of evidence ("based on this 

sample, the probability that the coin is fair equals at least 26.8 percent") and an error 

rate ("in repeated sampling, rejecting the null for a p-value not greater than 5 percent is 

the wrong decision 5 percent of the time")
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• Central to the work by Sellke, Bayarri, and Berger [11] is the following argument:

• "The point, however, is that, if a study yields p = 0.046, this is the actual information, not 

the summary statement 0 < p < 0.05.  The two statements are very different from an 

evidentiary perspective, and replacing the former by the latter is simply an egregious 

mistake." (p. 5)

• The authors then demonstrate that a p-value of 0.05 is only weak evidence against 

the H0—this is because "a p-value near 0.05 is essentially as likely to arise from H1

as from H0" (p. 5) (*)

• Finally, the authors show how to calibrate p-values as approximate lower bounds…

(1) on the Bayes factor B(p) (**) of H0 to H1 and

(2) on the frequentist conditional type I error probability (p)

Calibrating p-Values as Measures of Evidence
What Is in a p-Value?

* See http://www.stat.duke.edu/~berger/applet2/pvalue.html for a JAVA applet for p-value simulations
** The Bayes factor is an odds ratio, calculated as the ratio of marginal likelihoods of two competing models 
(hypotheses)
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• As an example, let the p-value of a given regression coefficient be about 0.05 (*)

• Then, using the approximation by Sellke, Bayarri, and Berger [11], the lower bound of 

the conditional type I error probability (p) equals 0.289

• This finding can be interpreted as saying that for H0 and H1 having equal prior

probabilities of being true, the posterior probability of H0 being true equals at least 

28.9 percent

• Further, for H0 and H1 having equal prior probabilities of being true, the Bayesian odds 

against the null are at most 2.5 to 1, as shown below:

1/B(p) = (1-0.289)/0.289  2.5

• In summary, the evidence against the null differs by a wide margin from the common 

interpretation that, for a p-value of 0.05, the evidence against the null is 20:1

* Because p-values are continuously distributed, the probability mass at 0.05 is nil; hence the concept of the p-value 
being in a small interval around 0.05.  An example of such an interval are the p-values equal to 0.05 after rounding

Calibrating p-Values as Measures of Evidence
Example
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Digression: Bayesian Meta-Analysis
Gelman and Weakliem [5]

• In small samples, the magnitude of statistically "significant" effects are likely overestimated

• Due to high standard errors associated with the estimation of regression coefficients, extreme 

outcomes are more likely to make it past the filter of statistical "significance"

• Conversely, statistically "insignificant" effects may be worth exploring, as statistical tests have 

little power in small samples (that is, the null has little chance of being rejected)

• Gelman and Weakliem [5] suggest using a Cauchy prior (and a normal likelihood) to compute the 

probability that an estimated regression coefficient is indeed positive (or negative, depending on 

the case) or within a given interval

• The scale parameter of the Cauchy distribution is calibrated such that an interval between zero and 

a judgmentally chosen magnitude for the regression coefficient covers (for instance) 90 percent of 

the probability mass of the density

• The Cauchy distribution has fairly flat tails—if the reported large effect has been measured with a 

sufficiently small standard error, then this effect is able to manifest itself in the posterior distribution 

even when the magnitude is outside the 90 percent interval defined by the Cauchy prior

See Appendix 4 for R code that applies the concept by Gelman and Weakliem [5] to an example discussed in 
these authors' paper 
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Variable Selection
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• Variable selection is evidential—through a dichotomous variable that governs the 
variable inclusion decision, the model delivers a posterior probability for the null 
hypothesis being true (or false)

• Variable selection does not automatically falsely reject the null hypothesis  ×
100 percent of the time

• Further, the researcher can control the sparseness of the model by adjusting the 
prior probability that regression coefficients are non-zero (or, for model space 
approaches, by adjusting the prior distribution for the dimension of the model 
space)

• Variable selection is not a remedy for the problem of overestimated effects in 
small samples

Motivation

In Bayesian variable selection, the maximum number of covariates that can be safely included in the model 
may exceed the number of observations 10 to 15 times.  See O'Hara and Sillanpää [9]
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• Model space approach

• Reversible Jump MCMC

• Indicator model selection

• Kuo-Mallick Method

• Gibbs Variable Selection

• Stochastic Search Variable Selection (SSVS)

• Nonhierarchical spike and slab priors

• Hierarchical spike and slab priors

• Generalized linear spike and slab (GLSS)

Approaches to Variable Selection

MCMC: Markov Chain Monte Carlo simulation
The above list of variable selection approaches is not meant to be exhaustive.  For an overview on variable 
selection models see O'Hara and Sillanpää [9]
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• Reversible Jump MCMC

• Elegant and comparatively fast but unwieldy in high dimensions

• High initial investment

• Kuo-Mallick Method

• The approach is simple but suffers from poor mixing if the prior 

for the regression coefficient is too vague

• Gibbs Variable Selection

• The approach addresses the poor mixing properties of the Kuo-

Mallick method, but requires tuning (using pilot runs)

Approaches to Variable Selection
Alternatives to SSVS
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• The prior for the regression coefficient is a mixture of two normal distributions

• The first distribution (the spike) is "sufficiently concentrated around zero" such that draws 
from this distribution can be "safely replaced by zero" (*)

• The second distribution (the slab) is diffuse, thus "admitting the non-zero coefficients" (*)

• An auxiliary variable, , typically with a Bernoulli prior, facilitates the mixture

•  = 0 indicates the coefficient originates from the distribution concentrated around zero

•  = 1 indicates the coefficient originates from the diffuse distribution

• Tuning of the variances of the two normal distributions that make up the spike and 
the slab prior of the regression coefficient can be challenging (**)

• On one hand, the variance of the spike has to be sufficiently small; on the other hand, if this 
variance is too restrictive, the Markov chain has difficulty moving between the states 
"coefficient is zero ( = 0)" and "coefficient is non-zero ( = 1)"

Stochastic Search Variable Selection
Nonhierarchical Spike and Slab Priors

(*) See Pang and Gill [10]
(**) Typically, the covariates are standardized to improve mixing of the Markov chains, and the dependent 
variable is scaled to a "reasonable" order of magnitude.  Although such scaling does not obviate tuning, it 
makes the choice of the precisions for the spike and slab prior less dependent on the analyzed data set
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Stochastic Search Variable Selection
Nonhierarchical Spike and Slab Priors

-4 -2 0 2 4

0
1

2
3

4

Value of Coefficient

Pr
ob

ab
ilit

y

Does not Contribute to Response Variable
Contributes to the Response Variable

Normal(0, 0.1)
Normal(0, 2)



© Copyright 2011 National Council on Compensation Insurance, Inc. All Rights Reserved. 29

• GLSS is an SSVS approach in spirit, with generalized spike and slab priors

• The prior for the regression coefficient is a mixture of two normal distributions

• SSVS typically has fixed values for the scale parameters of the two normal 

distributions

• GLSS places a prior on one of these scale parameters and specifies a fixed ratio 

between the two

• An auxiliary variable  facilitates the mixture

• SSVS typically specifies a Bernoulli hyper-prior for  with p = 0.5

• GLSS places a prior on p (instead of imposing a fixed value of, for instance, 0.5)

• The use of hierarchical spike and slab priors makes GLSS adaptive, thus providing a 

degree of self-tuning

Generalized Linear Spike and Slab (GLSS)
Hierarchical Spike and Slab Priors

See Pang and Gill [10]
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Generalized Linear Spike and Slab (GLSS)
Hierarchical Spike and Slab Priors—Shrinkage Versus Confounding

Critical for the GLSS approach is the choice of the inverse gamma prior for the variance displayed in the upper left-
hand chart.  If the probability mass that connects the spike and the slab priors is too thin, then the Markov chain has 
difficulty moving between the states "coefficient is zero" and "coefficient is non-zero."  On the other hand, too much 
confounding diminishes the ability of the model to discriminate between zero and non-zero coefficients. Further, 
confounding is data-dependent, which makes tuning dependent on the context.  See Pang and Gill [10]
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Generalized Linear Spike and Slab (GLSS)
Hierarchical Spike and Slab Priors—Shrinkage Versus Confounding

Critical for the GLSS approach is the choice of the inverse gamma prior for the variance displayed in the upper left-
hand chart.  If the probability mass that connects the spike and the slab priors is too thin, then the Markov chain has 
difficulty moving between the states "coefficient is zero" and "coefficient is non-zero."  On the other hand, too much 
confounding diminishes the ability of the model to discriminate between zero and non-zero coefficients.  Further, 
confounding is data-dependent, which makes tuning dependent on the context.  See Pang and Gill [10]
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• GLSS is the preferred approach as it requires comparatively little tuning

• The performance is measured for data sets for which the DGP is known

• Two DGP are considered (both of which require GLM techniques)

• Poisson with overdispersion

• Logistic with co-linearity

• The performance is evaluated for samples large (N=1000) and small (N=100)

• The performance is assessed in the presence of model misspecification

• Decisions for inclusion of covariates are compared to classical hypothesis testing

GLSS Performance Evaluation
Two Data Generating Processes

DGP: Data Generating Process
GLM: Generalized Linear Model
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• Poisson process with overdispersion

• Known data generating process

• Five coefficients that are zero

• Five coefficients that are non-zero

• R, http://www.r-project.org/

• Open source "software environment for statistical computing and graphics"

• Implementation of the S language, which was developed at Bell Laboratories

• JAGS – Just Another Gibbs Sampler, http://sourceforge.net/projects/mcmc-jags/files/

• "A program for the statistical analysis of Bayesian hierarchical models by Markov Chain Monte 

Carlo simulation"

• Called from R using the package rjags, http://cran.r-project.org/web/packages/rjags/index.html

• The R code and the JAGS model files are attached to this presentation

SSVS and GLSS Implementation in R
Using JAGS as the Sampling Platform

There are several R packages that perform variable selection, among which are the packages spikeslab and 
spikeSlabGAM
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